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A general framework for denoising phaseless
diffraction measurements

Huibin Chang, Stefano Marchesini

Abstract—We propose a general framework to recover un-
derlying images from noisy phaseless diffraction measurements
based on the alternating directional method of multipliers and
the plug-and-play technique. The algorithm consists of three-step
iterations: (i) Solving a generalized least square problem with the
maximum a posteriori (MAP) estimate of the noise, (ii) Gaussian
denoising and (iii) updating the multipliers. The denoising step
utilizes higher order filters such as total generalized variation
and nonlocal sparsity based filters including nonlocal mean
(NLM) and Block-matching and 3D filtering (BM3D) filters. The
multipliers are updated by a symmetric technique to increase
convergence speed. The proposed method with low compu-
tational complexity is provided with theoretical convergence
guarantee, and it enables recovering images with sharp edges,
clean background and repetitive features from noisy phaseless
measurements. Numerous numerical experiments for Fourier
phase retrieval (PR) as coded diffraction and ptychographic
patterns are performed to verify the convergence and efficiency,
showing that our proposed method outperforms the state-of-art
PR algorithms without any regularization and those with total
variational regularization.

Index Terms—Phaseless diffraction measurements, Ptycho-
graphic phase retrieval, coded diffraction pattern, image denois-
ing, ADMM, BM3D

I. INTRODUCTION

PHase retrieval (PR) plays a central role in the X-ray
diffraction imaging in vast industrial and scientific ap-

plications, such as crystallography and optics in [1], [2],
[3], [4], [5], etc, and its goal is to reconstruct an object
from phaseless measurements, i.e. only pointwise magnitudes
of the Fourier transform (FT) of the object are available.
Throughout the paper we discuss the PR from the noisy
phaseless measurements in a discrete setting.

Assume we have an underlying 2-dimensional unknown
object u with n1 × n2 pixels. We denote u in terms of a
vector of size n = n1 × n2 by a lexicographical order, i.e.

u : Ω = {0, 1, · · · , n− 1} → C.

We call classical PR problem [6] when one is given the
magnitudes of the Fourier transform of u, i.e., |Fu|2, where
| · |2 denotes the pointwise square of the absolute value of
a vector, and F : Cn → Cn denotes the discrete Fourier
transform (DFT), and the problem consists of retrieving the
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underlining image u. A general PR problem [7], [8] can be
obtained as follows

To find u ∈ Cn, s.t. |Au|2 = b,

with the phaseless measurement b : Ω̃ = {0, 1, · · · ,m−1} →
R+, if one can extend the DFT operator F to arbitrary linear
operator A : Cn → Cm.

The measurements can be contaminated by noise, or mis-
calibration of the experimental geometry, or the illumination
mask, which leads to further trouble for the algorithm design.
Generally speaking, PR involves solving a quadratic inverse
problem, which is ill-posed and challenging. Here we give
a brief review for the computational tools for it. In 1947
D. Gabor [9] combined a known “reference” signal which
linearized the PR problem, and received the Noble prize in
Physics in 1971, in the 1950s Karle and Hauptman [10], as
well as Sayre [11] developed methods to solve the PR problem
for binary atomic crystals. Hauptman and Karle received the
Nobel prize in Chemistry in 1985. In earlier work, phaseless
measurements of X-ray and electron diffraction played a
pivotal role in unequivocally showing the existance of atoms
[12], atomic structure of crystals by the Braggs, molecular
components of life including DNA, and later RNA, and over
100,000 proteins structures to date awarded by more than
10 nobel prizes in physics, chemistry and biology. In 1969
Hoppe [13] proposed to use multiple diffraction measurements
from a scanning sample, and in 1990s Rodemburg, Bates,
and Chapman independently experimentally demonstrated a
linearized inversion scheme based on the Wigner Distribution
Deconvolution method [14], [15]. The complexities of the
Wigner Deconvolution method are very high, which is about
the square of the number of unknowns, and therefore it has
not gained popularity in the experimental community. In 1972
Gerchberg and Saxton [16], introduced an alternating projec-
tion algorithm for a problem whereby one records phaseless
measurements of the the scattering amplitude, and sample
transmission. Fienup extended the method and applied it to
the classical phase retrieval problem [17]. The connection be-
tween Fienup’ Hybrid Input Output and the Douglas-Rachford
algorithm was discussed in [18], [19], and the connection
between the Douglas-Rachford and the ADM algorithm was
discussed in [6]. Several variant heuristic algorithms popular
in the optics community including [20], [21] were proposed to
solve the classical PR problems, and one can refer to [22], [6]
and the reference therein. These methods use projections onto
nonconvex constraint set, and therefore it is very difficult to
ensure the convergence theoretically. Recently, more work has
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focused on the convergence theory. A global convergence for
Gaussian measurements was analyzed by Netrapalli et al. [23].
The convergence under a generic frame was proved in [24],
and spectral methods including initialization by truncation
phase synchronization and framewise phase-synchronization
were employed to accelerate projection methods for large scale
ptychographic PR. Newton-type algorithms were proposed by
Qian et al. [25] and Zhong et al.[26] to accelerate the con-
vergence. A modified Levenberg-Marquardt method was pro-
posed [27] with global convergence guarantees. A Wirtinger
flow (WF) approach was proposed in [28] by comprised of an
initialization by spectral method and gradient descent, and was
further improved by truncated Wirtinger flow (TWF) [29]. A
Douglas-Rachford (DR) algorithm for PR with oversampling
measurements was proved to be locally and geometrically
convergent by Chen and Fannjiang [30]. In order to deal
with the conventional nonconvex projection algorithms for PR,
the PhaseLift [31] algorithm was proposed by Candés et al.
with the lift technique of semi-definite programming(SDP).
The PhaseCut algorithm was proposed by Waldspurger et
al. [7], where the PR problem was convexified by separating
phases and magnitudes. A computationally tractable low-rank
factorization method using lift technique of SDP was proposed
in [32] for solving ptychographic PR.

Sparse prior information of the unknown u can be effi-
ciently incorporated into PR in order to increase the quality
of reconstructed image, especially when the data is noisy
and incomplete. The SHRINK-WRAP algorithm generalized the
regression model by slowly shrinking the size of the support of
non-zero coefficients of u [33] and has been applied to several
ground breaking experiments using X-ray Free Electron Lasers
[34]. Similar methods based on hard thresholding, inversion
[35], and L1 soft thresholding have been proposed over the
years, e.g. [36], [37]. SDP-based methods were proposed to
solve a sparse PR problem [38], [39]. Directly extension of
the Fieup’s method [17] was proposed in [40] by an additional
sparsity constraint of the L0 norm for u. The L1 regularization
based variational method [41] was applied to the classical PR
problem. An efficient local search method for recovering a
sparse signal for the classical PR was presented in [42]. A
probabilistic method based on the generalized approximate
message passing algorithm was proposed in [43]. The shearlet
and total variation sparsity regularization methods were con-
sidered in [44], [45], [46] by assuming the objects possess
a sparse representation in the transform domain. Dictionary
learning methods were proposed to reconstruct the image in
[47], [48], where a dictionary was automatically learned from
the redundant image patches.

In this paper, we consider the PR problem for the sparse
images u ∈ Cn (or Rn) in which the measured data f ∈ Rm+
are corrupted due to severe noisy measurements as

f = Corrupt(|Au|2),

and a general minimization problem driven by regularization
method of the underlying image can be established as

min
u

Υ(u) := B(|Au|2, f) + λR(u), s.t. u ∈ K (1)

where u ∈ K is an underlying image that we want to recon-
struct from magnitude data f , R(u) is the sparse promoted
term, B(|Au|2, f) is the data fitting term deduced by the
maximum a posteriori (MAP) of the noise distribution, λ is
the positive parameter to balance the sparsity and data fitting
terms. Note that the set K is introduced to add some condition
as positivity [5] or the box constraint [45] and support set.
Stimulated by the alternating directional method of multipliers
[49], [50] (ADMM) and the plug-and-play technique [51],
[52], we reformulate it to a novel framework for PR with
theoretical convergence guarantee, which consist of three
steps: Solving a generalized least square problem with the
maximum a posteriori (MAP) estimate of the noise, Gaussian
denoising and updating the multipliers. In order to implement
the denoising step, we utilize the higher order total variation
such as total generalized variation and nonlocal sparsity based
filters including nonlocal mean and Block-matching and 3D
filtering (BM3D) filters in order to further improve the image
quality compared with the work in [44], [45], [46]. Moreover,
a symmetric technique is applied to the multiplier updating to
order to increase the convergence speed.

The rest of this paper is organized as follows. In section II,
we will show the general framework starting from the ADMM
for solving (1). In section III, detailed numerical algorithms
will be given, and the convergence of the proposed method is
proved as well. In section IV, the numerical experiments are
performed to demonstrate the effectiveness of the proposed
methods. Conclusions and future works are given in section
V.

II. GENERAL FRAMEWORK

A. MAP of noise

We consider two important types of noise as Poisson and
Guassian noise. The measurements are usually contaminated
by the Poisson noise for photon-counting, which follow Pois-
son distribution as follows

Prµ(n) =
e−µµn

n!
, n ≥ 0,

where µ is the mean and standard deviation. The counted
number of photons at pixel located at index i, denoted as
f(i), follows i.i.d. Poisson distributions with h(i) being the
ground-truth value as

f(i)
ind.∼ Poisson(h(i)), ∀i ∈ Ω̃. (2)

By MAP for a clean image h, the denoising problem can be
expressed as max Pr(h(i)|f(i)) if f is measured. One can
readily have

Pr(h(i)|f(i)) =
Pr(f(i)|h(i))Pr(h(i))

Pr(f(i))
, (3)

according to the Bayes’ Law, and as a result, maximiza-
tion of Pr(g(i)|f(i)) is equivalent to maximization of
Pr(f(i)|g(i))Pr(g(i)). Therefore, we have

Pr(f(i)|h(i)) = Prh(i)(f(i)) =
e−h(i)h(i)f(i)

(f(i))!
.
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Finally, one should minimize the logarithm of the
Pr(f(i)|h(i))Pr(h(i)) instead, i.e.

min
h≥0

∑
i∈Ω̃

− log Pr(f(i)|h(i))− log Pr(h(i))

= min
h≥0

∑
i∈Ω̃

(h(i)− f(i) log h(i))− log Pr(h(i)).

In a similar manner by replacing the Poisson distribution with
Gaussian distribution, one can readily get the MAP of it, and
we summarize them as follows

B(h, f) :=


1

2
〈h− f log h,1〉, for Poisson noised f ;

1

2
‖h− f‖2, for Gaussian noised f ,

(4)
where 1 denotes a vector whose entries are all one, and 〈·, ·〉
denotes the L2 inner product of two vectors.

B. General framework for PR

Regularization often plays an important role for noise re-
moval, and therefore, one can establish a general model (1) if
the measurements are collected from PR based on the above
MAP. We will show how to build up a general framework
starting from the ADMM step by step.

As a very popular solver, ADMM is simple and efficient to
solve the existing variation models for noise removal. It can be
obtained by introducing an auxiliary variable p = ∇u as [45],
[46] to prevent directly solving a non-differential minimization
problems by splitting technique. However, in order to solve (1),
there is an equivalent form to formulate the ADMM, which
can provide a quite different understanding of the algorithm
as [51]. By introducing an auxiliary viable u = v, one can
readily decouple the data fitting term and regularization term
as follows:

min
u,v

B(|Au|2, f) + IK (u) + λR(v),

s.t. u = v,
(5)

where the indicator function IK (u) defined by

IK (u) =

{
0, u ∈ K ;

+∞, otherwise,

with constrained set K .
In order to solve (5), the corresponding augmented La-

grangian is introduced with the multiplier Λ as

Lr(u, v; Λ) =B(|Au|2, f) + IK (u) + λR(v)

+Re(〈u− v,Λ〉) +
r

2
‖u− v‖2,

(6)

where the parameter r is a positive constant, and Re(·) denotes
the real part of a complex-valued number. The ADMM with
symmetric updating scheme following [53] can be written in
order to solve the saddle point problem

max
Λ

min
u,v
Lr(u, v; Λ)

as 

uk+1 = arg min
u
Lr(u, vk; Λk),

Λk+1/2 = Λk + r(uk+1 − vk),

vk+1 = arg min
v
Lr(uk+1, v; Λk+1/2),

Λk+1 = Λk+1/2 + r(uk+1 − vk+1),

(7)

if provided with the kth iterative solution (uk, vk,Λk). The
above algorithm is slightly different to [53] since a relax
parameter for the step size r can not accelerate the conver-
gence based on the numerical experiments reported in [53]
and therefore we omit it for simplicity. In our numerical
experiments, updating the multiplier with symmetric style can
indeed speedup the proposed method (see details in Figure 14)
compared with asymmetric style.

Let us analyze the first and the third subproblems one by
one. First for the first subproblem, one needs to solve

uk+1 = arg min
u
Lr(u, vk; Λk)

= arg min
u

B(|Au|2, f) + IK (u) +
r

2
‖u− (vk − Λk/r)‖2,

which we call it a generalized least square minimization
problem with respect to u with data term as vk − Λk

r in order
to satisfy the statistical property of the noise. Similarly, for
the third subproblem with respect to the variable v,

vk+1 = arg min
v
λR(v) +

r

2
‖v − (uk+1 + Λk+1/2/r)‖2, (8)

which we call it a denoising step in order to smooth the
data uk+1 + Λk+1/2/r. If setting R(v) = TV(v), the well-
known total variation [54], [55], [56], [57] based model was
considered in for Gaussian noised data in [45] and Poisson
noised data in [46].

Naturally one can build other generalized least square forms
in the first subproblem by the maximum a posteriori (MAP)
estimate for other kinds of noise, and in this paper we only
focus on the Gaussian and Poisson noise, which are common
and challengeable for PR. One can also generalize the third
step by arbitrary variational denoising method such as higher
order TV [58], [59], [60] instead of the traditional TV in order
to promote the sparsity. Moreover, similar to the work in [61],
[51], [52], some advanced filters as BM3D can be introduced
to replace the variational image denoising methods. Therefore
the proposed general framework is written in a unified form
as 

Step 1: uk+1 = ProxG/r+IK

(
vk − Λk

r

)
,

Step 2: Λk+1/2 = Λk + r(uk − vk+1),

Step 3: vk+1 = ProxσR

(
uk+1 + Λk+1/2

r

)
,

Step 4: Λk+1 = Λk+1/2 + r(uk+1 − vk+1),

(9)

where the proximal operator is denoted as

Proxs(v) = min
u
s(u) +

1

2
‖u− v‖2,

the operator ProxσR denoises the data v, the noise level is
directly denoted by σ := λ

r in [62], and

G(u) := B(|Au|2, f).



JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 4

In this paper, we will consider to implement this framework
in two aspects. First, we consider two different data fitting
terms of B(·, ·) for the Poisson and Gaussian noise removal
respectively. Second, for the denosing procedure in Step 3,
two kinds of operators can be employed: One is the variational
models with the explicit expression of G as ROF [57], LLT
[63], nonlocal TV [64] and total generalized variation (TGV)
[59]; The other kind is the filter based without the explicit ex-
pression of R such as the bilateral filter [65], nonlocal means
filter (NLM) [66], and BM3D filter [67]. Our proposed method
is rather simple and flexible, and can transform the denoising
the noisy PR to traditional PR task (without regularization or
filter) and the image denoising task. Therefore, a group of
denoising methods can be employed to further improve the
start-of-art PR methods. It will be very efficient, since we
combine some advanced filters, and on this sense, we introduce
a group of new filters for PR.

C. Connection with other related methods for PR

Our proposed method belongs to the “black box” methods.
One do not need to specifically design elaborate algorithms for
the original optimization models, and only focus on designing
efficient solvers for subproblems. Actually similar ideas al-
ready exist in [61], [52], [68] where a general framework for
image deblurring and inpainting in image and transform do-
mains were proposed. Compared with the work [45], [46], one
can design different and more efficient algorithm for the inner
loop for the Step 1 and Step 3 of our proposed method to solve
the generalized least square and image denoising problems.
Compared with the work [47], [48], more fast and efficient
filter as BM3D can be incorporated for the denoising step in
our framework, and furthermore Poisson noised data can be
dealt with by our proposed method. In a recent work in [69],
a general framework was also proposed based on generalized
approximate message passing from noisy data. However, they
consider a different problem with measurements f as

f = |Au+ ε|

where ε denotes the additive noise, and one readily sees that
the noise happens toAu. In summary, we aim to bridge the gap
between the PR algorithm and the image processing methods
in this paper. The core idea in this paper is quite close to
the error reduction algorithm [16] for PR, and the alternating
projection is computed between the magnitude constraint set
and the sparsity promoted evolution.

III. NUMERICAL ALGORITHM AND CONVERGENCE
ANALYSIS

In this section we will present the algorithm details in
the following two subsections for the generalized least quare
problem in the step 1 of (9) and the denoising problems in the
Step 3 of (9) separately.

A. Step 1 of (9): Solving the generalized least square sub-
problems

We focus on solving the first subproblem this subsection.
By setting g = vk − Λk

r , it becomes

uk+1 = ProxG/r+IK
(g)

There are many choices for solve the traditional PR problems.
However, these methods can not be directly applied to such
model with additional quadratic term. An ADMM can be
used directly to solve this problem. Similarly to [6], [45], we
reformulate it by introducing z = Au as

min
u,z

B(|z|2, f) + IK (u) +
r

2
‖u− g‖2, s.t.z = Au, (10)

with the corresponding augmented Lagrangian as

L̂η(u, z; Λ̂) = B(|z|2, f) + IK (u) +
r

2
‖u− g‖2

+Re(〈z −Au, Λ̂〉) +
η

2
‖z −Au‖2.

The ADMM consists of three steps. For the subproblem with
respect to the variable u, one shall compute the problem as

min
u∈K

r

2
‖u− g‖2 +

η

2
‖Au− (z + Λ̂/η)‖2.

If the constrained set K = Cn, similarly to [46], the real and
complex parts of minimizer of the above problem satisfies the
the following equationsηRe(A∗A) + rI −Im(A∗A)

Im(A∗A) ηRe(A∗A) + rI

Re(u)

Im(u)



=

ηRe(A∗ẑ) + rRe(g)

ηIm(A∗ẑ) + rIm(g)

 ,
(11)

with ẑ = z + Λ̂/η.
We can simplify the solution of above subproblem if the

matrix A involves Fourier measurements with masks {Ik}Kk=1

for coded diffraction pattern as

Au =


F(w0 ◦ u)
F(w1 ◦ u)

...
F(wK−1 ◦ u)

 , (12)

where ◦ denotes the pointwise multiplication, wk is a (mask)
matrix indexed by k, each of which is represented by a vector
in Cn in a lexicographical order. Therefore we have A∗A =∑
j

w∗j ◦ wj , which is a real-valued matrix. Finally we have

umin =
(
ηA∗A+ rI

)−1(
ηA∗(z + Λ̂/η) + rg

)
, (13)

since the diagonal matrix ηA∗A + rI is non-singular. One
can easily get the same equations as (13) for ptychographic
PR, and we omit the details here. However, if K 6= Cn, it
requires us to introduce additional variable to establish the
ADMM as [45]. In order to simplify the algorithm, one can
use an additional projection step for such case.
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For the subproblem with respect to the variable z, the
following subproblem should be considered

min
z

B(|z|2, f) +
η

2
‖z − z0‖2,

with z0 := Au− Λ̂/η.
When the measurement is contaminated by the Poisson

noise, we can directly get the solution to the minimization
problem

min
z

1

2
〈|z|2 − 2f log |z|,1〉+

η

2
‖z − z0‖2, (14)

following [70], [46] in the following lemma.

Lemma III.1. The minimizer to (14) is

zmin(j) =
η|z0(j)|+

√
η2|z0(j)|2 + 4(1 + η)f(j)

2(1 + η)

× sign(z0(j)),

(15)

for all j ∈ Ω̃.

When the noise is Gaussian, a direct L2 data fitting term
can be obtained by the MAP as the first equation in (4). Hence
the minimization problem should be considered as

min
z

1

2

∥∥|z|2 − f∥∥2
+
η

2
‖z − z0‖2. (16)

We give a lemma to show how to compute such problem.

Lemma III.2. The minimizer to (16) is

zmin(j) = ρ(j)sign(z0(j)), (17)

where sign(z0(j)) =
z0(j)

|z0(j)|
, and

ρ(j) =
3

√
η|z0(j)|

4
+
√
D(j) +

3

√
η|z0(j)|

4
−
√
D(j), if D(j) ≥ 0;

2
√

(f(j)− η/2)/3 cos
(

arccos(θj/3)
)
, otherwise,

(18)

for all j ∈ Ω̃, with

D(j) =
(η/2− f(j))3

27
+
η2|z0(j)|2

16
,

and
θ(j) =

η|z0(j)|
4
√
−(η/2− f(j))3/27

.

Proof. One readily sees that the optimization procedure is
independent for each entry of z. Therefore we only consider
the problem for each entry z(i) as

zmin(j) = arg min
z(j)

1

2

∣∣|z(j)|2 − f(j)
∣∣2 +

η

2
|z(j)− z0(j)|2.

Then we have zmin(j) = ρ(j)sign(z0(j)), where ρ(j) ≥ 0.
We focus on the determination of ρ(j) as

ρ(j) = arg min
x≥0

φ(x), (19)

with
φ(x) :=

1

2
(x2 − f(j))2 +

η

2
(x− |z0(j)|)2.

The stationary points of the above problem satisfy the follow-
ing cubic equation as

x3 +
(
− f(j) +

η

2

)
x− η

2
|z0(j)| = 0.

The minimizer should be either the stationary points of φ(x)
or zero. Based on a simple discussion by Vieta’s formulas and
the close solution to cubic equation [71], it only has one real
non-negative root as (18), which is also the unique minimizer
of (19). Therefore, we can compute the value the non-negative
root ρ(j) by (17) to get the minimizer of (19), that concludes
to this lemma.

In summary, we give the overall algorithm for this subprob-
lem of Step 1 in (9) as

Step 1: Solve uk+1 by (11) with (z, Λ̂) := (zk, Λ̂k),

Step 2: Solve zk+1 by (17) and (15)

with (u, Λ̂) := (uk+1, Λ̂k),

step 3: Update Λ̂k+1 as

Λ̂k+1 = Λ̂k + η(zk+1 −Auk+1),
(20)

for the (k + 1)
th iterations if provided with (uk, zk, Λ̂k).

B. Step 3 of (9): Denoising subproblems with respect to the
variable v

As mentioned above, two kinds of operators can be consid-
ered. First one is the variational image methods as ROF, LLT,
NLTV and TGV, and the other kind is the filter such as the
bilateral filter, nonlocal means filter and BM3D filter.

1) Variational methods: One needs to compute the sub-
problem of the third step of (9) as

min
v∈Cn

σR(v) +
1

2
‖v − v0‖2, (21)

where we rewrite (8) with v0 := vk − Λk

r .

First for the underling real-valued image, one can directly
use the existing algorithm to solve the variational models.
However, in order to deal with the complex-valued image,
we should give precise definition of TV as

TV(v) =

√∑
j

|(Dxv)j |2 + |(Dyv)j |2,

where Dx(·),Dy(·) denote the forward difference operators of
the complex-valued image with respect to the x-direction and
y-direction. For TV based denoising, we need to compute the
minimization problem (8) as

min
v∈Cn

σTV(v) +
1

2
‖v − v0‖2,

with the complex-valued variable v0. By introducing the
variable p = ∇u := (Dxu,Dyu), we have to solve the
following saddle point problem as

max
Ψ

min
p,v

σ‖p‖+
1

2
‖v − v0‖2 + Re(〈p−∇v,Ψ〉)

+
γ

2
‖p−∇v‖2,
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with a positive constant γ. It consists of three steps w.r.t the
variables v, p and the update of the multiplier Ψ. For the
subproblem w.r.t v, one needs to solve

min
v

1

2
‖v − v0‖2 +

γ

2
‖p+

1

γ
Ψ−∇v‖2.

The above minimization problem can be considered as min-
imizing of the real and the complex parts of the variable v
independently, and therefore by simply separating the real and
complex parts of v as (11) and computing the stationary points,
we have

(−γ∆ + I)Re(v) = Re(v0) + γRe(∇(p− 1

γ
Ψ)),

(−γ∆ + I)Im(v) = Im(v0) + γIm(∇(p− 1

γ
Ψ)),

where ∆u = ∇ · ∇u, ∇ · p denotes the backward difference
operator of p which satisfies the adjoint relation as

〈∇v, p〉 = −〈v,∇ · p〉.

Finally we obtain the uniform formula for the complex-valued
image as

(−γ∆ + I)(v) = v0 + γ∇(p− 1

γ
Ψ), (22)

which actually has a same form for the real-valued image.
Furthermore, if using the periodical boundary condition for
variable v, fast Fourier transformations (FFTs) can be used to
solve the above problem with optimal time complexity.

For the subproblem w.r.t the variable p, one needs to
compute the minimizer pmin by the soft thresholding as

pmin = max{0, |∇v−Ψ/r| −σ/γ} ◦ sign(∇v−Ψ/r). (23)

In summary, combining the solutions vk+1 of (22) and the
solution pk+1 of (22) with the update of the multipliers Ψ by

Ψk+1 = Ψk + γ(pk+1 −∇vk+1),

a fast minimization algorithm for the subproblem (8) is es-
tablished. For other kind of higher order TV models, one can
readily build the efficient ADMMs just by considering the
complex-valued image instead of the real-valued image, since
the analysis of solving the above TV model demonstrates the
similarity of the cases between the real-valued and complex-
valued image. Limited to the space, we do not give all the
detailed algorithms for them.

2) Filters based methods: There are a considerable mount
of filters for image denoising, and a very comprehensive
and deep review was given in [72], where it showed that
the bilateral filter, boosting, kernel, and spectral method, and
nonlocal means and so on are deeply connected with the
current popular iterative methods as the Bregman iterations
[73]. Among these filters, we focus on NLM and BM3D filters
in this paper, which promote the patch sparsity and can be used
for the complex-valued image directly.

The nonlocal mean filter can be defined as a linear combi-
nation of the nonlocal neighbours [66] as

NLM(v)(x) =
∑
y∈Ωx

w(x, y)v(y), ∀x ∈ Ω,

where v is the noisy image, the nonlocal weight function
w(x, y) measures the similarity between two pixels satisfying
w(x, y) ≥ 0,

∑
y∈Ωx

w(x, y) = 1, ∀x ∈ Ω, y ∈ Ωx, and the

region Ωx is the search window at point x which is usually
square and selected over the entire image. Nonlocal total
variation regularized methods and fast algorithms stimulated
by the nonlocal means were also developed [74], [64] for
image deblurring, inpainting and reconstruction.

Different to the idea employing the weighted average of
nonlocal patches from the noisy image, BM3D enhanced
the sparsity by grouping 2D image patches consisting of
similar structures or features into 3D patches. Four steps
includes (1) Analysis step: Grouping the similar patches into
a 3D blocks and linear transformation of the 3D blocks, (2)
Processing: Hard thresholding of the transform domain, and
(3) Synthesis: Inverse 3D transformation of the shrinkage of
the transform domain to the image domain. The variational
methods combining the BM3D filter for image deblurring
were proposed in [61] and inpainting [52], [68] based on
the regularization by Lp norm of the transform domain. The
Nash equilibrium problem as a bilevel optimization problem
was further presented, and therefore the method by a direct
use of BM3D filter greatly improved the restoration results
of traditional variational methods with the single-objective
minimization problem.

C. Theoretical analysis

We will give the theoretical analysis of the proposed frame-
work in (9). The denoising subproblem is well defined for
both the regularized term or the filters. First we analyze
the convergence of ADMM for the generalized least square
subproblem in (20). Readily one can infer that the functional
G(u) is nonconvex, which leads to the main challenge for
the convergence study. However, from the numerical per-
formances, it is quite robust. Following [6], we give the
convergence results as follows.

Proposition III.1. Assuming that the multiplier of (10) exists,
the sequences of the multipliers Λ̂k+1 − Λ̂k → 0 as k →
∞, and {uk} is bounded, then there exists an accumulative
point of {uk, zk, Λ̂k} satisfies the Karush-Kuhn-Tucker (KKT)
condition of (10) (a stationary point).

Proof. See the detailed proof in the Refs. [6], [45], [46].

Here we give a very general assumption of the convex
regularization R(v) as follows.

Assumption III.1. The functional R(v) is proper, closed, and
convex, and lower semi-continuous.

We analyze the convergence of the ADMM for the denosing
step of (9) when variational regularization models are incor-
porated in.

Proposition III.2. The ADMM converges to the unique global
minimizer of (21) for the denoising step of (9).

Proof. Readily one can prove the unique existence of the
minimizer to (21) under Assumption III.1. By lifting the
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dimension of the complex-valued variable v by separating the
corresponding complex and real parts as [46], one can con-
clude this proposition for this convex minimization problem
following [49], [50].

We have shown the convergence study of the algorithms
for each subproblems, and one can also derive the following
convergence theorem for the general framework in (9) if
the convex variational regularization functional R(v) satisfies
Assumption III.1.

Theorem 1. If the subproblems in Step 1 and Step 3 are
exactly solved, the algorithm in (9) is convergent, i.e. the
iterative sequences have an accumulative point (u∗, v∗,Λ∗),
which satisfies the KKT condition of (6) if the sequences
{Λk+1 − Λk+1/2} or {Λk+1/2 − Λk} converge to zero and
{uk} is bounded.

Proof. One needs to prove (u∗, v∗,Λ∗) satisfies that
0 ∈ ∇uG(u∗) + ∂uIK (u∗) + Λ∗,

0 ∈ λ∂vR(v∗)− Λ∗,

0 = u∗ − v∗.
(24)

We finish the proof in two steps. In Step 1, we prove the
boundedness of the iterative solutions. First by the multiplier
update steps, the sequence {vk} is bounded as a result of the
boundedness of {uk}. Therefore, the multiplier {Λk+1/2} is
bounded due to (uk+1 + Λk+1/2/r) − vk+1 ∈ λ

r ∂vR(vk+1).
With the assumption of the convergence of {Λk+1−Λk+1/2}
or {Λk+1/2 − Λk}, the boundedness of {Λk} is derived.
Therefore there exists a subsequence {uk, vk,Λk} (still use
the same notation to represent this subsequence) and a triple
(u∗, v∗,Λ∗), such that

{uk, vk,Λk} → {u∗, v∗,Λ∗} as k →∞.

In Step 2, we will prove the triple (u∗, v∗,Λ∗) satisfies (24).
One can readily has u∗ = v∗ by taking limit in the step of
multiplier updates. Readily one has

G(uk+1) + IK (uk+1) +
r

2
‖uk+1 − (vk − Λk/r)‖2

− r

2
‖u− (vk − Λk/r)‖2 ≤ G(u) + IK (u) ∀ u

By taking limits of uk, vk,Λk, and the lower semi-continuity
of G and IK , one has

G(u∗) + IK (u∗) +
r

2
‖u∗ − (v∗ − Λ∗/r)‖2

≤G(u) + IK (u) +
r

2
‖u− (v∗ − Λ∗/r)‖2 ∀ u,

which is the first relation of the KKT condition. The second
one can be derived in a similar manner. That concludes to the
theorem.

The convergence of the proposed method combining the
filters is much difficult than the above case, since one does
not know the explicit form of R(v) for a general filters such
as NLM and BM3D. The convergence is only limited to the
fixed-point sense. We give the following assumption.

Assumption III.2. There exists a fixed point (u∗, v∗,Λ∗) for
the framework (9), i.e.

u∗ = ProxG/r+IK
(v∗ − Λ∗/r),

v∗ = Dσ(u∗ + Λ∗/r),

u∗ = v∗,

(25)

where
Dσ(u) := ProxσR(u)

represents a filter.

We can eliminate v∗ in order to get the following form for
(u∗,Λ∗) {

u∗ = arg min
u

ProxG/r+IK
(u∗ − Λ∗/r),

u∗ = Dσ(u∗ + Λ∗/r).
(26)

Using the condition as Theorem 1, we have the following
theorem as follows.

Theorem 2. Assume the filter is continuous, i.e.

Dσ(v̂k)→ Dσ(v̂∗) if v̂k → v̂∗as k →∞.

If the subproblem in Step 1 are exactly solved, the algorithm
in (9) is convergent, i.e. the iterative sequences have an
accumulative point (u∗, v∗,Λ∗), which is a fixed point of (25)
if the sequences {Λk+1−Λk+1/2} or {Λk+1/2−Λk} converge
to zero and {uk} is bounded.

Proof. It can be readily proved similarly to the proof of
Theorem 1, and we omit the details here.

Remark III.1. In the above theorem, we assume that the
filter operator is continuous. In real applications, the operator
possibly relies on the image and therefore one can hardly give
a verification. In the work [75], the operator is assumed to
be bounded, and their proposed method with adaptive steps
is convergent to its fixed point if R(v) has bounded gradient,
that can not apply to the data fitting term in our model.

IV. EXPERIMENTS AND DISCUSSION

A. Numerical implementation

In the numerical part, we set K = Rn and Cn for
real-valued and complex-valued image respectively in (1).
Although we have given a framework for PR with arbitrary
linear operator A, we only show the performance on Fourier
measurements involved with two types of patterns of linear
operators A: coded diffraction pattern (CDP) with random
masks and ptychographic PR with zone plate lens. For the
first pattern, the octanary CDP is explored, and specifically
each element of Ij in (12) takes a value randomly among
the eight candidates, i.e., {±

√
2/2,±

√
2i/2,±

√
3,±
√

3i}.
Set K = 2, 4 for real-valued and complex-valued image
respectively as [46]. The setting of ptychographic PR is given
as follows. The number of frames is 16 × 16 with sliding
distance 16 pixels and the frame size 64×64. The len and the
generated illumination are shown in Figure 1.

The ground truth images consist of five images including
four real-valued with 512×512 pixels and one complex-valued
with 256× 256 pixels.
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(a) (b)

Fig. 1. Lens in (a) and the generated illumination in (b) used for ptychographic
PR.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 2. Ground truth images. Real-valued images (512× 512 pixels) “Lena”
in (a), “Barbara” in (b), “Peppers” in (c), “Plane” in (d), and complex valued
image (256× 256 pixels) with magnitude in (e), real and imaginary parts in
(f) and (g) respectively.

The Poisson noise is added to the clean image with different
peak levels, and different scale image uν are used as uν = νu
with the peak level ν for ground truth u. We measure the
quality of the reconstructed the image ũ by

SNR(ũ, u) = −20 log(‖c∗ũ− u‖/‖c∗ũ‖),

with the ground truth image u, and a scale constant as

c∗ = max
|c|=1

‖cũ− u‖.

For Gaussian noise, SNR is also used to measure the noise
level for the contaminated data.

There are many choices for PR without regularization, such
as error reduction (ER)[16], ADMM [6], [45], [46], Wirtinger
flow [28], [29] and so on, while we only use the ADMM for
comparison. For the methods with regularization, we compare
with TV based method in [46] for Poisson noise, and a variant
method by inserting (17) for Gaussian noise. For our proposed
methods, the second order TGV realization of R(v) and two
filters including NLM, and BM3D are used. For simplicity, we
use “LS-PR” to denotes the ADMM for solving the original
PR problem without any regularization, “TV-PR” for TV based
methods in [46], “TGV-PR” for our proposed method with
TGV regularization, “NLM-PR” for our proposed method with
NLM filtering, and “BM3D-PR” with BM3D filtering. It is
quite difficult to set a unify fair stopping condition for such
different algorithms, and the algorithms are all stopped if
they reach a maximum iteration number T , where T is select
heuristically. For “LS-PR” and “TV-PR”, set T = 50, while
for “TGV-PR”, “NLM-PR” and “BM3D-PR”, set T = 30

(the iterations number are more than real number needed, and
usually 10 ∼ 15 iterations are sufficient to produce satisfactory
results). In the inner loop for solving the generalized least
square problem, five inner iterations are adopted. The other
parameters used in the experiments will be addressed in the
following subsections.

All the tests are performed on a laptop with Intel i7-
5600U2.6GHZ, and 16GB RAM. The implementation of the
codes is in MATLAB. For our proposed methods, we solve
the denoising subproblem with TGV with the package by S.
Keiichiro 1, NLM filter by J.V. Manjón 2 and BM3D by K.
Dabov 3.

B. Poisson noise removal

1) Coded diffraction pattern (CDP): For CDP, we first
show the performance on real-valued images in (a)-(d) of
Figure 2 with different noise levels by setting the peak level
ν ∈ {3.0× 10−3, 5.0× 10−3, 1.0× 10−2}, and see the results
in Figure 3-Figure 5. With a fixed noise level the parameters
of each compared methods are set to the same for each image,
and see the detailed parameters in Table I.

By observing the reconstructed images in Figure 3-Figure 5,
if the noise is not so heavy, all the methods work well as shown
in Figure 3. When noise level increases as in Figure 4, results
by “LS-PR” show obvious noise, while all the regularized and
filtering methods can work. If the noise level is very high as
in Figure 5, the reconstructed results by “LS-PR” can not be
acceptable, while “NLM-PR” and “BM3D-PR” outperforms
the others. “TV-PR” with simple regularization by TV is
effective to generate the noiseless images for different noise
level, and meanwhile it introduces the staircase artifacts and
break some important information as texture; “TGV-PR” can
suppress the staircase artifacts, and produce resulted images
with sharp edges. However, the repetitive structures can not
be kept. It seems that “NLM-PR” and “BM3D-PR” can both
deal with the texture parts well, e.g. the hair of “Lena” and
the stripe structures of “Barbara”, which outperform other
compared methods. Meanwhile, it seems that “BM3D-PR”
produces the cleanest background for “Plane” among all the
compared methods. The SNRs are put in Figure 6, where
one can readily see that our proposed “TGV-PR”, “NLM-
PR” and “BM3D-PR” outperform “TV-PR”, and “BM3D-
PR” gains the largest SNRs among them. The average SNRs
are 6.10, 20.32, 20.87, 21.98, 22.94 dB for “LS-PR”, “TV-PR”,
“TGV-PR”, “NLM-PR” and “BM3D-PR” respectively, and
“BM3D-PR” improves the image quality with SNRs about 2dB
higher than that of “TV-PR” on average.

Numerical experiments for CDP is also performed on the
complex-valued image of Figure 2 (e), and we show the
recovery results in Figure 7 with different noise level by setting
the peak level ν ∈ {5.0 × 10−2, 8.0 × 10−2, 1.0 × 10−1}.
One can readily see that with high level noise as the first

1https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/
submissions/49717/versions/2/download/zip

2https://www.mathworks.com/matlabcentral/mlc-downloads/downloads/
submissions/13176/versions/1/download/zip

3http://www.cs.tut.fi/∼foi/GCF-BM3D/BM3D.zip
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 3. PR with CDP. Peak level ν = 1.0 × 10−2 for Poisson noise. First
row: “LS-PR”; Second row: “TV-PR”; Third row: “TGV-PR”; Fourth row:
“NLM-PR”; Fifth row: “BM3D-PR”.

Method Peak level ν λ r η

TGV-PR
3.0× 10−3 7.0× 102

5.0× 105

50

5.0× 10−3 6.0× 102

1.0× 10−2 5.0× 102

NLM-PR
3.0× 10−3 6.0× 104

1.0× 1065.0× 10−3 5.0× 104

1.0× 10−2 3.0× 104

BM3D-PR
3.0× 10−3 1.5× 105

5.0× 1055.0× 10−3 2.0× 105

1.0× 10−2 2.0× 105

TABLE I
PARAMETERS FOR POISSON NOISE REMOVAL OF CDP ON REAL-VALUED

IMAGES FOR FIGURE 3-FIGURE 5.

column of Figure 7, “TV-PR”, and our proposed methods can
remove the noise in the background. However, “TV-PR” and
“TGV-PR” can not preserve the small structure at all. It seems
that “NLM-PR” learns the wrong feature patterns. Parameters
used are put in Table II. “BM3D-PR” is the most effective,
which not only obtain clean background, but also recover some
smaller structures. When the noise level decreases, “NLM-PR”
still fails to find correct patterns for smaller structures, while
the other methods can preserve both the larger and smaller
scales features. We put the SNRs in Figure 8, and one can
observe the increase of SNRs by our proposed methods. The

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 4. PR with CDP. Peak level ν = 5.0 × 10−3 for Poisson noise. First
row: “LS-PR”; Second row: “TV-PR”; Third row: “TGV-PR”; Fourth row:
“NLM-PR”; Fifth row: “BM3D-PR”.

Method Peak level ν λ r η

TGV-PR
5.0× 10−2

2 5.0× 105 1008.0× 10−2

1.0× 10−1

NLM-PR
5.0× 10−2 4.0× 104

1.0× 106

50

8.0× 10−2 3.5× 104

1.0× 10−1 3.5× 104

BM3D-PR
5.0× 10−2 8× 104 4.0× 105

8.0× 10−2 1.5× 105 1.0× 106

1.0× 10−1 1.5× 105 1.0× 106

TABLE II
PARAMETERS FOR POISSON NOISE REMOVAL OF CDP ON

COMPLEX-VALUED IMAGES FOR FIGURE 7.

average SNRs are 2.64, 10.15, 11.78, 10.50 and 12.76 for all
the five methods, and “BM3D-PR” improves the reconstructed
images with highest SNRs among them, and about 2.5dB is
increased compared with those by “TV-PR” even for such
complicated image. Moreover, the SNR increase of “BM3D-
PR” comparing with those of “LS-PR” and “TV-PR” is the
biggest among the four different images in Figure 8, which
implies that it is quite suitable for the images with textures.

2) Ptychographic PR (Ptycho-PR): The complex-valued
image in Figure 2 (e) are tested to show the performance of
our proposed methods with different noise level by setting
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Fig. 5. PR with CDP. Peak level ν = 3.0 × 10−3 for Poisson noise. First
row: “LS-PR”; Second row: “TV-PR”; Third row: “TGV-PR”; Fourth row:
“NLM-PR”; Fifth row: “BM3D-PR”.

ν∈{3× 10-3, 5× 10-3, 1× 10-2}

S
N

R

0

5

10

15

20

25

LS-PR
TV-PR
TGV-PR
NLM-PR
BM3D-PR

(a) “Lena”

ν∈{3× 10-3, 5× 10-3, 1× 10-2}

S
N

R

0
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10

15

20

25

LS-PR
TV-PR
TGV-PR
NLM-PR
BM3D-PR

(b) “Barbara”

ν∈{3× 10-3, 5× 10-3, 1× 10-2}

S
N

R
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10
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20

25
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NLM-PR
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(c) “Peppers”

ν∈{3× 10-3, 5× 10-3, 1× 10-2}

S
N

R

0

5

10

15

20

25

30

35

LS-PR
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TGV-PR
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BM3D-PR

(d) “Plane”

Fig. 6. SNRs for images in Figure 7 v.s. different peak levels ν by the
methods with CDP.

the peak level ν ∈ {0.2, 0.5, 0.8}, and see results in 9 and
SNRs in Figure 10, where we only show the performances of
“LS-PR”,“TV-PR” and “BM3D-PR”. We fix the parameters as
λ = 7.0 × 103, r = 7.0 × 104 and η = 5 for different noise
levels. Reconstructed images are blurry by “LS-PR”, which
seems more challengeable than CDP with random masks. With
high level noise, “TV-PR” recovers the images with sharp
edges and clean background, but almost completely blurs the
smaller scale features. “BM3D-PR” can work well and some of
the features are recovered when one can hardly see any smaller
features from the images by “LS-PR”. When the noise level
decreases, “TV-PR” and “BM3D-PR” can work well. Again
“BM3D-PR” gains the highest SNRs inferred from Figure 12.
The average SNRs are 8.60, 13.67, and 15.89 for “LS-PR”,
“TV-PR”, and “BM3D-PR” respectively, and our proposed
method has about 2dB increase averagely compared with “TV-
PR”.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 7. PR with CDP. Peak level ν = 5.0×10−2, 8.0×10−2, 1.0×10−1 for
Poisson noise from left to right. First row: “LS-PR”; Second row: “TV-PR”;
Third row: “TGV-PR”; Fourth row: “NLM-PR”; Fifth row: “BM3D-PR”.

ν∈{0.05,0.08,0.1}

S
N

R

0

5

10

15

LS-PR
TV-PR
TGV-PR
NLM-PR
BM3D-PR

(a)

Fig. 8. SNRs for reconstructed images in Figure 7 v.s. peak level ν for
different methods with CDP.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 9. Ptychographic PR. Peak level ν = 0.2, 0.5, 0.8 for Poisson noise
from left to right. First row: “LS-PR”; Second row: “TV-PR”; Third row:
“BM3D-PR”.

ν∈{0.2,0.5,0.8}
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(a)

Fig. 10. SNRs of the reconstructed images in Figure 9 v.s. peak level ν by
different methods for ptychographic PR.

C. Gaussian noise

We only consider the ptychographic PR in this part, and
see the results in Figure 11. Set parameters of “BM3D-PR” as
λ = 3.5×107, 1.5×107, 1.0×107 for the noisy measurements
with SNRs to be 15, 20, and 30 respectively. Fix the parameter
r = 2.5× 107, and η = 1.0× 103 with different noise levels.
The reconstructed images by “LS-PR” only keep the large-
scale features, and completely lose the smaller ones. TV-PR
just smooths the images, while also loses most of the smaller
scale structures in Figure 11 (d) and (e). With our proposed
“BM3D-PR”, it can recover almost all of the texture parts in
Figure 11 (h), and even contaminated by very severe noise,
some of the smaller scale features can be preserved in Figure
11 (g). The SNRs are put in Figure 12, and one can readily
observe the increase of the SNRs by our method. The average
SNRs are 6.41, 9.65, and 11.09 for “LS-PR”, “TV-PR” and
“BM3D-PR” respectively, and our method gains about 3dB,
1.5dB increase averagely compared with “LS-PR’ and “TV-
PR” respectively.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 11. Ptychographic PR. Noisy level of measurements with SNR =
15, 20, 30 for Gaussian noise from left to right. First row: “LS-PR”; Second
row: “TV-PR”; Third row: “BM3D-PR”.

 Measurements   with SNRs ∈ {15,20,30} dB
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Fig. 12. SNRs for reconstructed images in Figure 11 v.s. measurements with
SNR = 15, 20, 30 for ptychographic PR.

D. Convergence

To check the convergence of the iteration process, we
monitor the histories of SNRs and relative errors of iterative
solution uk w.r.t. the iteration number k, which are defined
as ‖u

k−uk−1‖
‖uk‖ . We show the histories of errors and SNRs for

CDP for our proposed “TGV-PR”, “NLM-PR”, and “BM3D-
PR” on images “Lena” with Poisson noise, and see Figure
13 for detail. It demonstrates that our proposed methods are
convergent and stable. For heavier noise, one needs more
iterations to reach the final results with better image quality.
Although we set the maximum iteration number as 30, about
one third or half of the number is enough for real applications.
It will be interesting to investigate how to set the optimal
iteration number for different noise levels, and we put it as a
future work.

We also perform an experiment to show the advantage of
symmetric updating for our proposed methods compared with
asymmetric style (remove Step 2 of (9)), and see the results in
Figure 14 for the history of the SNRs. One can readily observe
the acceleration by introducing the symmetric iteration. A
possible direction is to adopt the adaptive step to updating
the multipliers in order to further speedup the algorithm, and
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Fig. 13. Convergence study by checking the histories of the SNRs and relative
errors w.r.t. the iteration number. First row: The relative errors w.r.t. iteration
number; Second row: The SNRs w.r.t. iteration number. From left to right:
histories of relative errors and SNRs for “TGV-PR”, “NLM-PR” and “BM3D-
PR” respectively.
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Fig. 14. Performances comparison for symmetric updating and asymmetric
updating. From left to right: histories of SNRs for “TGV-PR”, “NLM-PR”
and “BM3D-PR” respectively.

we also put it as a future work.

E. Stable performance for different parameters

Here the Poisson noise removal of CDP for real-valued
image “Lena” is considered. Set peak level as ν = 3.0×10−3.
λ0 = 7.0×102, and r0 = 5.0×105 as shown in Table I. We test
the performance of the proposed methods w.r.t the parameters
λ and r, where we vary one with the other fixed. Particularly,
we choose λ from {λ0×2−l, λ0×2−l+1, · · · , λ0×2l−1, λ0×
2l} with l = 5 and fix r = r0, and see the resulted SNRs in
Figure 15 (a). The parameter λ play a role in balancing the
data fitting term and regularization term. If the parameter λ be-
comes very small, regularization effect get relative weak, and
as a result, the recovery results contain more noise. If it is very
large, the recovery results go far away from the measurements,
and one also recover the images with lower quality. Similarly,
choose r from {r0× 2−l, r0× 2−l+1, · · · , r0× 2l−1, r0× 2l}
with l = 5 and fixed λ = λ0 and plot the corresponding
SNRs of the reconstructed images in Figure 15 (b). Since the
proposed methods solve the nonconvex optimization problem
just simply by ADMM, it demonstrates we shall select a
moderate value for parameter r.
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Fig. 15. Performances w.r.t. parameters λ and r.

V. CONCLUSION

In this paper, we propose a simple and flexible framework
to retrieve phase from noisy measurements contaminated by
Poisson or Gaussian nose. By incorporating higher order TV
as TGV and nonlocal sparsity based filters as NLM and
BM3D, the image are recovered with sharp edges, clean back-
ground and repetitive features. Numerical experiments show
that even for the complicated complex-valued image with both
large scale and repetitive smaller scale features, our proposed
methods can work well compared with the traditional PR
algorithm without regularization, and simple “TV-PR” method.
Our proposed methods rely on some important parameters, and
in the future it is very interesting to explore an automatical
approach for selecting optimal parameters in practise.
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